Engineering news
Research to identify the optimum steel for modern railways – with the aim of combining the highest safety standards and reduced whole life costs – is being headed by experts at the University of Huddersfield.
It is an element in a new £2 million project backed by major funding bodies. The Rail Safety and Standards Board (RSSB) and the Engineering and Physical Sciences Research Council (EPSRC) have combined to provide funds for three linked programmes of research into new materials that will reduce heavy maintenance and renewal costs for rail tracks.
The University of Huddersfield is home to the Institute of Railway Research (IRR), which has a multinational team of experts based in specially-equipped labs. It formed a consortium that was joined by three other universities, including Cambridge, Leeds and Cranfield in order to bid for a share of the RSSB and EPSRC funding.
A panel of leading industrial and academic figures appraised the IRR-led consortium’s proposal and then gave the go ahead for a two-year investigation into developing a fundamental understanding of how different characteristics of steel microstructures respond to rail wheel contact conditions. This will establish the design rules for the optimum rail steel microstructure that is best at resisting degradation resulting from the contact between wheel and rail.
The principal investigator for the project is IRR head of enterprise Dr Adam Bevan. Technical leadership will also be provided by Dr Jay Jaiswal, a visiting professor at the IRR and a leading metallurgist with a speciality in rail materials. He has held important research posts with British Steel, Corus and Tata Steel.
Professor Jaiswal has contributed to the development of two patented high-performance steels for use in railway tracks that are produced by Tata Steel. But he is convinced that further improvements are possible and that they are vital to the economics of the railway. Furthermore, the study will provide the much needed data on economic impact of the increased rail life to facilitate wider and more rapid deployment of more degradation resistant steels.
“The railways are crying out for cost reduction, and considerable improvements have been made to reduce the complex contact stresses, but it is equally necessary to make the rail steel more resistant to the wheel-rail forces to arrive at the lowest life cycle cost for the track,” said Professor Jaiswal.
He explained that when a kilometre of track was renewed, the price of the delivered rail accounted for just 10% of the total renewal cost.
“Therefore, if you could install a rail steel that lasts twice as long as the one that is currently used,” said Professor Jaiswal, “the potential saving is the remaining 90% of the second installation cost added to the benefits of less disruption to traffic and increased track availability.” Dr Bevan said that one of the outcomes of the research would be a set of guidelines that would enable engineers to select the most appropriate steel for the type of track and the vehicles that used it.
“The aim is to reduce whole life costs, maximising rail life as well as reducing the overall damage to the track.”
Dr Bevan stressed that there was also an important safety dimension. “We certainly don’t want to design a steel that has a lower cost, but which increases the safety risks, so it is a question of managing these different issues.”